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1 ANALYSIS OF THE VACCINATION MODEL WITH LIVE VACCINES

Let us consider the following system of ordinary differential equations:

Ṡ = Λr(S, I, R, V1) + (1− ρ12 − ρ13)λV1 − βWS − ρ11φ1S − µS,
İ = βWS + ρ13λV1 − (µ+ d+ γ)I,
Ṙ = γI + ρ12λV1 − µR,
V̇1 = ρ11φ1S − (µ+ λ)V1,
U̇ = Λm(M)− αIU − (1− δ)αV1U − ηU,
Ẇ = αIU + (1− δ)αV1U − ηW

(1)

with Λr(S, I, R, V1) = (b − qN)(S + R) + r1(b − qN)I + r2(b − qN)V1, Λm(M) = (g − xM)M ,
q = (b − µ)/N0 (where N0 is the carrying capacity of the ruminant population), and x = (g − η)/M0

(where M0 is the carrying capacity of the mosquito population). Note that we always assume that b > µ
and g > η throughout our work for positive numbers of the maximum sizes of ruminant and mosquito
populations, respectively. Following the properties of solutions of system (1), we define the closed and
positively invariant set:

Γ =

{
(S, I, R, V1, U,W ) ∈ R6

+|
S + I +R + V1 ≤ (b−µ)

q , U +W ≤ (g−η)
x ,

S ≥ 0, I ≥ 0, R ≥ 0, V1 ≥ 0, U ≥ 0,W ≥ 0

}
.
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1.1 WITH VACCINATED RUMINANTS AT THE INTRODUCTION BUT NO ADMINISTRATION
OF VACCINES AFTERWARD (ρ11 = 0 AND V1(0) ≥ 0)

Under the assumption that ρ11 = 0, the number of vaccinated ruminants by live vaccines is described as
follows:

V1(t) = V1(0)e−(µ+λ)t. (2)

It depends on the initial number of vaccinated ruminants and duration that ruminants stay in the
vaccination class, and declines from V1(0) toward zero over time.

1.1.1 Steady states There are four disease-free steady states:
(S, I, R, V1, U,W ) = (0, 0, 0, 0, 0, 0), ((b − µ)/q, 0, 0, 0, 0, 0), (0, 0, 0, 0, (g − η)/x, 0), and ((b −
µ)/q, 0, 0, 0, (g − η)/x, 0). The first three steady states are always unstable which can be proved by
considering the signs of eigenvalues of the Jacobian matrix of (1) at each steady state or using Routh-
Hurwitz stability criterion. Stability of the disease-free steady state P 0 = ((b − µ)/q, 0, 0, 0, (g −
η)/x, 0) depends on the basic reproductive number of (1) and is further investigated below. There
exists a disease-present (endemic) steady state without vaccination (P ∗) in Γ: (S, I, R, V1, U,W ) =
(S∗, I∗, R∗, V ∗

1 , U
∗,W ∗) with

S∗ =
x(µ+ d+ γ)(η + I∗)

β(g − η)
, R∗ =

γI∗

µ
, V ∗

1 = 0, U∗ =
η(g − η)

αx(η + I∗)
,W ∗ =

(g − η)I∗

x(η + I∗)
,

and I∗ satisfying the following second-order polynomial equation:

C2I
∗2 + C1I

∗ + C0 = 0,

where

C2 =
(
x(µ+d+γ)
β(g−η) + γ

µ

)(
qx(µ+d+γ)
β(g−η) + q + γ

µ

)
+ r1q

(
x(µ+d+γ)
β(g−η) + 1 + γ

µ

)
,

C1 = x(µ+d+γ)η
β(g−η)

(
qx(µ+d+γ)
β(g−η) + q + γ

µ

)
−
(
x(µ+d+γ)
β(g−η) + γ

µ

)(
b− qx(µ+d+γ)η

β(g−η)

)
−r1

(
b− qx(µ+d+γ)η

β(g−η)

)
+ (µ+ d+ γ) + µx(µ+d+γ)

β(g−η) ,

C0 = −x(µ+d+γ)ηβ(g−η)

(
(b− µ)− q x(µ+d+γ)ηβ(g−η)

)
.

Since C2 > 0 and C0 is negative ( (b−µ)q = N0 > S∗ > x(µ+d+γ)η
β(g−η) ), I∗ is given by

I∗ =
−C1 +

√
C2
1 − 4C0C2

2C2
.

1.1.2 The basic reproductive number The basic reproductive number (R0) has played a crucial role in
determining whether an infectious disease can spread through a population. It is defined as the expected
number of secondary infections resulting from an introduction of a single infectious individual into a
disease-free population (Anderson and May (1991)). If R0 < 1, the number of individuals infected by
the pathogen declines, and if R0 > 1, the number increases with each generation.

Here, we use a method of the next-generation matrix to calculate R0. The element (i, j) of the matrix
represents the expected number of new infections of type i caused by an (infected) individual of type j
(Diekmann and Heesterbeek (2000); Diekmann et al. (2010)). There are three types of infections in
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model (1): I, V1, and W . Hence, the next generation matrix is

K =

 0 θ
(µ+λ)

βN0

η
0 0 0

αM0

(µ+d+γ)
(1−σ)αM
(µ+λ) 0


with N0 = (b − µ)/q and M0 = (g − η)/x. The basic reproductive number of (1) is then the largest
eigenvalue of the matrix K (Diekmann and Heesterbeek (2000); Diekmann et al. (2010)) and is given
by:

R0 =
βαM0N0

(µ+ d+ γ)η
. (3)

Note that we use a square of the largest eigenvalue as R0.

1.1.3 Stability analysis We first establish the stability of the disease-free steady state P 0.

Theorem 1 The disease-free steady state P 0 of (1) is locally asymptomatically stable in Γ if R0 < 1 and
it is unstable if R0 > 1.

PROOF. This theorem can be proved by the definition of R0 and theorems in (Diekmann and
Heesterbeek (2000); Diekmann et al. (2010)). We examine this theorem by considering the signs of
eigenvalues of the Jacobian matrix of (1) at the disease-free steady state P 0 as follows:

J0 =



b− 2qN0 −qN0 + r1b− r1qN0 b− 2qN0 − qN0 + r2b− 0 0 −βN0

r2qN
0 + (1− ρ12 − ρ13)

0 −(µ+ d+ γ) 0 ρ13λ 0 βN0

0 γ −µ ρ12λ 0 0
0 0 0 −(µ+ λ) 0 0
0 −αM0 0 −(1− δ)αM0 g − 2xM0 − η g − 2xM0

0 αM0 0 (1− δ)αM0 0 −η


.

Eigenvalues of J0 are given by λ1 = b− 2qN0− µ, λ2 = −µ, λ3 = g− 2xM0− η, λ4 = −(µ+ λ), and

λ5 =
−(µ+ d+ γ + η)±

√
(µ+ d+ γ + η)2 + 4η(µ+ d+ γ)(R0 − 1)

2
.

Clearly, all the eigenvalues of J0 are negative if and only if R0 < 1.

Theorem 2 If R0 < 1, the disease-free steady state P 0 of (1) is globally asymptomatically stable.

PROOF. Let us define a function V as follows:

V = µηI + βµN0W +

(
µηρ13λ+ (1− δ)βαµM0N0

(µ+ λ)

)
V1.

Clearly, V is positive definite as V(I, V1,W ) ≥ 0 for all I, V1, and W and V(I, V1,W ) = 0 if and only if
I = V1 = W = 0. Because

V̇ = µη (βWS − (µ+ d+ γ)I) + βµN0 (αIU + (1− δ)αV1U − ηW )− (1− δ)βαµM0N0V1,
≤ µη

(
βWN0 − (µ+ d+ γ)I

)
+ βµN0

(
αIM0 + (1− δ)αV1M0 − ηW

)
− (1− δ)βαµM0N0V1,

= µ(µ+ d+ γ)η(R0 − 1)I,

we have V̇ < 0 for all I, V1,W 6= 0 and V̇ = 0 for I = V1 = W = 0 if R0 < 1. By the LaSalle’s
invariance principle (LaSalle (1976)), V is a Lyapunov function and consequently the disease-free steady
state P 0 of (1) is globally asymptomatically stable if R0 < 1.
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Studying stability of P ∗ in (1) directly is unwieldy and not tractable. Hence, we omit it and will shortly
make additional assumptions to study a simpler system in this supplement.

1.1.4 Impacts of vaccinated ruminants Neither the disease-present steady state nor the basic
reproductive number gives information of possible consequences from an introduction of vaccinated
ruminants with live vaccines into areas in which live vaccines have not been implemented previously.
Here, we demonstrate that the introduction of vaccinated ruminants into the areas may lead to a higher
number of infectious ruminants.

From (1), we have
İ ≥ ρ13λV1 − (µ+ d+ γ)I.

Hence,
d(e(µ+d+γ)τI) ≥ ρ13λV1(0)e(d+γ−λ)τdτ.

Integrating both sides on the interval [0, t] gives

I ≥ ρ13λV1(0)
(e−(µ+λ)t − e−(µ+d+γ)t)

(d+ γ − λ)

for any I(0) ≥ 0. Hence, even if I(0) = 0, we have I(t) > 0 for t > 0 if ruminants vaccinated with live
vaccines are introduced. Even without the introduction of additional vaccinated or infectious ruminants,
having I(t) > 0 for some t > 0 would lead to an outbreak if R0 > 1. Note that vaccinated ruminants by
live vaccines can also transmit RVFV to mosquitoes and consequently increase the number of infectious
ruminants.

1.2 WITH VACCINATION (ρ11, φ1 6= 0)

When vaccination is present, studying dynamics of (1) directly can be difficult and unwieldy. Let us
assume that the total number of ruminants is constant (N = N0) (herdsmen may maintain the size
of animal herds), so that Λr(S, I, R, V1) = µN0 + dI . We also use the theory of asymptomatically
autonomous systems to study the qualitatively equivalent system for a mosquito population.

In the absence of RVFV, one has

Ṁ = (g − xM)M − ηM = Λm(M)− ηM.

Hence, Λm(0) = 0, Λ̇m(0) = g > η, and Λ̈m(M) = −2x < 0. The mosquito carrying capacity M0

satisfies
Λm(M0) = ηM0 and Λ̇m(M0) = −g + 2η = (η − (g − η)) < η.

The latter condition assures the asymptotic stability of M0 such that

Λm(M) > ηM, for 0 ≤M ≤M0.

When RVFV is present, Λm(M) ≤ Λm(M0). Therefore, under the assumption that Λr(S, I, R, V1) =
µN0+dI and by the theory of asymptotically autonomous systems (Thieme (1992), Brauer et al. (2008)),
the system (1) is equivalent to the system in which S is replaced by N0 − I − R− V1 and M is replaced
by its limit as follows:

İ = βW (N0 − I −R− V1) + ρ13λV1 − (µ+ d+ γ)I,
Ṙ = γI + ρ12λV1 − µR,
V̇1 = ρ11φ1(N

0 − I −R− V1)− (µ+ λ)V1,
Ẇ = αI(M0 −W ) + (1− δ)αV1(M0 −W )− ηW.

(4)
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1.2.1 Steady states As S = N0 and U = M0 when RVFV is absent, there is no disease-free steady
state of (4). If a disease-present steady state of (4) in Γ exists (by setting the right hand sides of (4) equal
to zero), it is in the following form:

(I, R, V1,W ) = P ∗
0 = (I∗, R∗, V ∗

1 ,W
∗)

with

V ∗
1 = h1 − h2I∗

(
h1 = ρ11φ1µN

0

ρ11φ1(ρ12λ+µ)+µ(µ+λ)
, h2 = ρ11φ1(µ+γ)

ρ11φ1(ρ12λ+µ)+µ(µ+λ)

)
,

R∗ = h3 + h4I
∗
(
h3 = ρ12λh1

µ , h4 = γ−ρ12λh2
µ

)
,

W ∗ = h5+h6I
∗

h7+h8I∗
(h5 = (1− δ)αM0h1, h6 = αM0(1− (1− δ)h2), h7 = (1− δ)αh1 + η,

h8 = α(1− (1− δ)h2)),

and I∗ satisfying
a2I

∗2 + a1I
∗ + a0 = 0,

where

a2 = (µ+ d+ γ)h8 + ρ13λh2h8 + βh6(1 + h4 − h2),
a1 = (µ+ d+ γ)h7 + ρ13λ(h2h7 − h1h8) + β[h5(1 + h4 − h2)− h6(N0 − h1 − h3)],
a0 = −ρ13λh1h7 − βh5(N0 − h1 − h3).

It is not obvious that a positive and real root exists for the equation. However, by exploring the value of
I∗ under certain parameter values numerically, our results suggest that I∗ exists and is positive.

1.2.2 Stability analysis Now we prove the stability of the disease-present steady state P ∗
0 .

Thorem 3 The disease-present steady state P ∗
0 of (1) is locally asymptomatically stable in Γ.

PROOF. We linearize the system (4) at the disease-present steady state. The Jacobian matrix at P ∗
0 is

given by:

J∗ =

 −a11 −a12 −a13 a14
a21 −a22 a23 0
−a31 −a32 −a33 0
a41 0 a43 −a44


with a11 = βW ∗ +µ+ d+ γ, a12 = βW ∗, a13 = (βW ∗− ρ13λ), a14 = β(N0− I∗−R∗−V ∗

1 ), a21 =
γ, a22 = µ, a23 = ρ12λ, a31 = ρ11φ1, a32 = ρ11φ1, a33 = ρ11φ1 +µ+λ, a41 = α(M0−W ∗), a43 =
(1− δ)α(M0 −W ∗), a44 = αI∗ + (1− δ)αV ∗

1 + η. The characteristic equation of J∗ is

z4 + a1z
3 + a2z

2 + a3z + a4 = 0

with

a1 = a11 + a22 + a33 + a44,
a2 = a11a22 + a11a33 + a11a44 + a12a21 + a22a33 + a22a44 + a23a32 + a33a44 − a13a31 − a14a41,
a3 = a11a22a33 + a11a22a44 + a11a33a44 + a11a23a32 + a12a21a33 + a12a21a44 + a14a31a43

+a22a33a44 + a23a32a44 − a12a23a31 − a13a21a32 − a13a22a31 − a13a31a44 − a14a22a41
−a14a33a41,

a4 = a11a22a33a44 + a11a23a32a44 + a12a21a33a44 + a14a21a32a43 + a14a22a31a43
−a12a23a31a44 − a13a21a32a44 − a13a22a31a44 − a14a22a33a41 − a14a23a32a41.
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According to the Routh-Hurwitz criteria, the disease-present steady state is locally asymptomatically
stable if and only if

a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4.

If P ∗
0 exists, aii > 0 for i = 1, . . . , 4 so that a1 > 0 and we have a11a23a32 > a12a23a31,

a12a21a33 > a13a21a32, and a11a22a33 > a13a22a31. Because β(N0 − I∗ − R∗ − V ∗
1 )α(M0 −

W ∗) = [(µ+d+γ)I∗−ρ13λV ∗
1 ]η

I∗+(1−δ)V ∗
1

≤ (µ + d + γ)η, we obtain a11a33a44 > a13a31a44 + a14a33a41
and a11a22a44 > a14a22a41. Hence, a3 > 0. For a4, we have a11a22a33a44 > a13a22a31a44 +
a14a22a33a41, a11a23a32a44 > a12a23a31a44 + a14a23a32a41, and a12a21a33a44 > a13a21a32a44.
Consequently, a4 > 0. Analytically showing that a1a2a3 > a23 + a21a4 can be very unwieldy. By using
simulations to explore a sign of a1a2a3 − (a23 + a21a4) under possible values of parameters, it suggests
that this quantity is positive. For example, if 1/µ = 5.7, τ = 8/365,m = 0.3, 1/φ = 141/365, ρ11 =
0.8, ρ12 = 0.9, ρ13 = 0.05, 1/λ = 21/365, a = 256, pr = 0.14, pm = 0.35, 1/η = 60/365, k = 1.5, and
δ = 0.8, which is a set of parameters used in several of our simulation results, a1a2a3 − (a23 + a21a4) ≈
5.05 × 108. When parameters are more towards the extinction of RVFV, such as 1/µ = 10, τ =
8/365,m = 0.1, 1/φ = 100/365, ρ11 = 1, ρ12 = 0.999, ρ13 = 0.001, 1/λ = 4/365, a = 100, pr =
0.1, pm = 0.1, 1/η = 10/365, k = 0.5, and δ = 1, we find a1a2a3 − (a23 + a21a4) ≈ 9 × 1011. When
parameters are more towards the RVFV establishment that (for example) 1/µ = 1, τ = 30/365,m =
0.9, 1/φ = 200/365, ρ11 = 0, ρ12 = 0.999, ρ13 = 0.2, 1/λ = 30/365, a = 500, pr = 0.5, pm =
0.5, 1/η = 90/365, k = 10, and δ = 0, a1a2a3 − (a23 + a21a4) ≈ 3.6× 1015.

2 ANALYSIS OF THE VACCINATION MODEL WITH KILLED VACCINES

Let us consider the following model:

Ṡ = Λr(S, I, R, V2) + (1− ρ22)νV2 − βWS − ρ21φ2S − µS,
İ = βWS + (1− σ)βWV2 − (µ+ d+ γ)I,
Ṙ = γI + ρ22νV2 − µR,
V̇2 = ρ21φ2S − (1− σ)βWV2 − (µ+ ν)V2,
U̇ = Λm(M)− αIU − ηU,
Ẇ = αIU − ηW

(5)

with Λr(S, I, R, V2) = (b− qN)(S +R+ V2) + r1(b− qN)I , Λm(M) = (g − xM)M , q = (b− µ)/N0

(where N0 is the carrying capacity of a ruminant population), x = (g− η)/M0 (where M0 is the carrying
capacity of a mosquito population), b > µ, and g > η. We define the closed and positively invariant set:

Γk =

{
(S, I, R, V2, U,W ) ∈ R6

+|
S + I +R + V2 ≤ (b−µ)

q , U +W ≤ (g−η)
x ,

S ≥ 0, I ≥ 0, R ≥ 0, V2 ≥ 0, U ≥ 0,W ≥ 0

}
.

2.1 STEADY STATES

There are five steady states of the system (5):

1. P 0 = (0, 0, 0, 0, 0, 0) is a disease-free steady state with extinction of both ruminant and mosquito
populations;

2. P 1 = (0, 0, 0, 0, (g − η)/x, 0) is a disease-free steady state with extinction of a ruminant population;
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3. P 2 = (S2, 0, R2, V 2
2 , 0, 0) is a disease-free steady state with extinction of a mosquito population

S2 = (b−µ)µ
q[ρ21ρ22φ2ν+µρ21φ2+µ(µ+ν)]

,

R2 = (b−µ)ρ21ρ22νφ2
q[ρ21ρ22φ2ν+µρ21φ2+µ(µ+ν)]

,

V 2
2 = (b−µ)µρ21φ2

q[ρ21ρ22φ2ν+µρ21φ2+µ(µ+ν)]
;

4. P 3 = (S3, 0, R3, V 3
2 , (g − η)/x, 0) is a disease-free steady state with vaccine administration in a

ruminant population (S3 = S2, R3 = R2, and V 3
2 = V 2

2 );
5. P ∗ = (S∗, I∗, R∗, V ∗

2 , U
∗,W ∗) is a disease-present steady state

S∗ =
[
(1−σ)(g−η)βαI∗
ρ21φ2x(η+αI∗)

+ (µ+ν)
ρ21φ2

] [
ρ21φ2x

2(µ+d+γ)(η+αI∗)2

(g−η)βα[(1−σ)(g−η)βαI∗+(µ+ν)x(η+αI∗)+(1−σ)ρ21φ2x(η+αI∗)]

]
,

R∗ = γI∗(g−η)βα[(1−σ)(g−η)βαI∗+(µ+ν)x(η+αI∗)+(1−σ)ρ21φ2x(η+αI∗)]+ρ21ρ22νφ2x2(µ+d+γ)(η+αI∗)2
µ(g−η)βα[(1−σ)(g−η)βαI∗+(µ+ν)x(η+αI∗)+(1−σ)ρ21φ2x(η+αI∗)] ,

V ∗
2 = ρ21φ2x

2(µ+d+γ)(η+αI∗)2

(g−η)βα[(1−σ)(g−η)βαI∗+(µ+ν)x(η+αI∗)+(1−σ)ρ21φ2x(η+αI∗)] ,

U∗ = (g−η)η
x(η+αI∗) ,

W ∗ = (g−η)αI∗
x(η+αI∗) ,

where I∗ satisfies the following equation:

(b− q(S∗ + I∗ +R∗ + V ∗
2 )) + (S∗ +R∗ + V ∗

2 ) + r1(b− q(S∗ + I∗ +R∗ + V ∗
2 ))I∗

+(1− ρ22)νV ∗
2 − βW ∗S∗ − ρ21φ2S∗ − µS∗ = 0.

Theorem 4 The disease-free steady state P 0 of (5) is unstable in Γk.

PROOF. We linearize system (5) at P 0. The Jacobian matrix at P 0 is given by

J0 =


b− ρ21φ2 − µ r1b b b+ (1− ρ22)ν 0 0

0 −(µ+ d+ γ) 0 0 0 0
0 γ −µ ρ22ν 0 0

ρ21φ2 0 0 −(µ+ ν) 0 0
0 0 0 0 g − η g
0 0 0 0 0 −η

 .

Eigenvalues of J0 are g − η, −η, −(µ+ d+ γ), and those of

Ĵ =

[
b− ρ21φ2 − µ b b+ (1− ρ22)ν

0 −µ ρ22ν
ρ21φ2 0 −(µ+ ν)

]
.

Because g > η, the eigenvalue g − η of (5) is always positive and consequently P 0 is unstable.

As studying stability of other steady states in (5) can be unwieldy and not tractable, we omit it and
investigate the basic reproductive number of (5) and a simpler system under some additional assumptions.
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2.2 THE BASIC REPRODUCTIVE NUMBER

By considering the next-generation matrix of (5), there are two types of infections: I and W . The next
generation matrix is given by

K =

 0 β(N0−R3−V 3
2 )+(1−σ)βV 3

2
η

αM0

(µ+d+γ) 0


with N0 = (b−µ)/q and M0 = (g−η)/x. The basic reproductive number of (5) is the largest eigenvalue
of the K matrix and is described by:

Rk0 =
βαM0N0µ(µ+ ν) + (1− σ)βαM0N0µρ21φ2
η(µ+ d+ γ)[ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν)]

. (6)

Note that we use a square of the largest eigenvalue as Rk0 . From the definition of Rk0 and theorems
Diekmann and Heesterbeek (2000) and Diekmann et al. (2010), the disease-free steady state P 2 of
(5) is locally asymptomatically stable in Γk if R0 < 1 and unstable if R0 > 1.

2.3 CONSTANT NUMBERS OF RUMINANTS

Let us assume that the total number of ruminants is constant in (5) (N = N0), that Λr(S, I, R, V2) =
µN0 + dI and S = N0 − I −R− V2. We use the theory of asymptomatically autonomous systems for a
mosquito population so that U can be replaced by M0 −W (see Section 1 for further details).

İ = βW (N0 − I −R− V2) + (1− σ)βWV2 − (µ+ d+ γ)I,
Ṙ = γI + ρ22νV2 − µR,
V̇2 = ρ21φ2(N

0 − I −R− V2)− (1− σ)βWV2 − (µ+ ν)V2,
Ẇ = αI(M0 −W )− ηW.

(7)

2.3.1 Steady states There are three steady states of (7):

1. P 0
0 = (I, R, V2,W ) = (0, 0, 0, 0) is a disease-free steady state with no administration of vaccination;

2. P 1
0 = (I, R, V2,W ) = (0, R1, V 1

2 , 0) =
(

0, ρ21ρ22φ2νN
0

ρ21ρ22φ2ν+µρ21φ2+µ(µ+ν)
, µρ21φ2N

0

ρ21ρ22φ2ν+µρ21φ2+µ(µ+ν)
, 0
)

is
a disease-free steady state with administration of vaccination;

3. P 1
0 = (I, R, V2,W ) = (I∗, R∗, V ∗

2 ,W
∗) is a disease-present steady state with

R∗ = γI∗

µ + ρ21ρ22φ2ν[µ(N
0−I∗)−γI∗][αI∗+η]

µ[(αI∗+η)(ρ21ρ22φ2ν+ρ21φ2µ+µ(µ+ν))+µ(1−σ)βαI∗M0]
,

V ∗
2 = ρ21φ2[µ(N

0−I∗)−γI∗][αI∗+η]
(αI∗+η)(ρ21ρ22φ2ν+ρ21φ2µ+µ(µ+ν))+µ(1−σ)βαI∗M0 ,

W ∗ = αI∗M0

αI∗+η ,

where I∗ satisfies the following equation:

βW ∗(N0 − I∗ −R∗ − V ∗
2 ) + (1− σ)βW ∗V ∗

2 − (µ+ d+ γ)I∗ = 0,

which leads to a polynomial of degree 3 in I∗.
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2.3.2 Stability Because P 0
0 can be obtained from P 1

0 by setting φ2 = 0 or ρ21 = 0, we only study the
stability of P 1

0 in (7).

Theorem 5 The disease-free steady state P 1
0 of (5) is locally stable in Γk if and only if Rk0 < 1.

PROOF. This theorem can be proved by the definition of R0 and theorems in Diekmann and
Heesterbeek (2000) and Diekmann et al. (2010). We examine this theorem by using the Routh-Hurwitz
criterion. The Jacobian matrix of (7) at P 1

0 is as follows:

J1 =

 −(µ+ d+ γ) 0 0 β(N0 −R1 − V 1
2 ) + (1− σ)βV 1

2
γ −µ ρ22ν 0

−ρ21φ2 −ρ21φ2 −(ρ21φ2 + µ+ ν) −(1− σ)V 1
2

αM0 0 0 −η

 .
The characteristic equation of J1 is given by:

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0

with
a1 = (µ+ d+ γ + η) + (2µ+ ν + ρ21φ2),
a2 = η(µ+ d+ γ) + (µ+ d+ γ + η)(2µ+ ν + ρ21φ2) + (ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))
−βαM0(N0 −R1 − V 1

2 + (1− σ)V 1
2 ),

a3 = η(µ+ d+ γ)(2µ+ ν + ρ21φ2) + (µ+ d+ γ + η)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))
−(2µ+ ν + ρ21φ2)βαM

0(N0 −R1 − V 1
2 + (1− σ)V 1

2 ),
a4 = η(µ+ d+ γ)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))

−(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))βαM0(N0 −R1 − V 1
2 + (1− σ)V 1

2 ).

By the Routh-Hurwitz criteria, P 1
0 is locally asymptomatically stable if and only if

a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4.

Under the assumption that all parameters have positive values, it is clear that a1 > 0. Since

N0 −R1 − V 1
2 + (1− σ)V 1

2 =
(µ(µ+ ν) + (1− σ)µρ21φ2)N

0

(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))
,

we can rewrite a2 and a4 in terms of Rk0 and other parameters as follows

a3 = η(µ+ d+ γ)(2µ+ ν + ρ21φ2) + (µ+ d+ γ + η)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))
−η(µ+ d+ γ)(2µ+ ν + ρ21φ2)R

k
0 ,

and
a4 = η(µ+ d+ γ)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))(1−Rk0).

Consequently, if Rk0 < 1, a3 > 0 and a4 > 0. Moreover, if Rk0 > 1, a4 < 0 and P 1
0 is unstable. After

canceling some terms out, we obtain

a1a2a3 − (a23 + a21a4) = η(µ+ d+ γ)(µ+ d+ γ + η)(2µ+ ν + ρ21φ2)(1−Rk0)2

+η(µ+ d+ γ)(µ+ d+ γ + η)2(2µ+ ν + ρ21φ2)
2(1−Rk0)

+η(µ+ d+ γ)(µ+ d+ γ + η)(2µ+ ν + ρ21φ2)
3(1−Rk0)

+(µ+ d+ γ + η)2(2µ+ ν + ρ21φ2)
2(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))

+(µ+ d+ γ + η)(2µ+ ν + ρ21φ2)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))2

+2η(µ+ d+ γ)(µ+ d+ γ + η)(2µ+ ν + ρ21φ2)R
k
0

+(2µ+ ν + ρ21φ2)(ρ21ρ22φ2ν + µρ21φ2 + µ(µ+ ν))
×[(µ+ d+ γ + η)3 − 2η(µ+ d+ γ)(µ+ d+ γ + η)],
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which is always positive if Rk0 < 1. By Routh-Hurwitz criterion, P 1
0 of (5) is stable if and only if Rk0 < 1.

Proving that the disease-present steady state P ∗ of model (5) is locally stable in Γk if and only ifRk0 > 1
can be unwieldy but can be done by using Routh-Hurwitz criterion and numerical studies of some criterion
(see Section 1 for live vaccines as an example). However, we omit the proof here.

3 ADDITIONAL RESULTS
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Figure 1. Time from the beginning of an outbreak to a peak when (A) live vaccines are administered and the probability that ruminants are vaccinated (ρ11)
and the probability that they acquire immunity (ρ12) vary; (B) killed vaccines are used and the probability that ruminants are vaccinated (ρ21) and the
probability that they receive repeated doses (ρ22) vary; (C) live vaccines are used and ρ11 and the reduction factor of transmission in vaccinated ruminants
(δ) vary; and (D) killed vaccines are used and ρ21 and the reduction factor of transmission in vaccinated ruminants (σ) vary.
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Figure 2. Epidemic size and endemic numbers when none of ruminants are vaccinated before an outbreak: (A) the epidemic size of an outbreak for live
vaccines when the probability that ruminants are vaccinated (ρ11) and the probability that they acquire immunity (ρ12) vary; (B) the epidemic size of an
outbreak for killed vaccines when the probability that ruminants are vaccinated (ρ21) and the probability that they receive repeated doses (ρ22) vary; (C) the
endemic number for live vaccines when ρ11 and ρ12 vary; and (D) the endemic number for killed vaccines according to the changes of ρ21 and ρ22.
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Figure 3. Epidemic size and endemic numbers with different vaccination strategies and vaccine efficacy of live vaccines. (A)-(D) show the epidemic sizes
according to the changes of the probability that ruminants are vaccinated by live vaccines (ρ11), the probability that they acquire immunity (ρ12), and vaccine
efficacy where (A) the reduction factor of transmission from ruminants to mosquitoes (δ) is 0.8 and the probability of reversion to virulence (ρ13) is 0.05; (B)
δ = 0.8 and ρ13 = 0.2; (C) δ = 0.6 and ρ13 = 0.05; (D) δ = 0.6 and ρ13 = 0.2. (E)-(H) show the endemic number according to the changes of ρ11 and
ρ12, and vaccine efficacy where (E) δ = 0.8 and ρ13 = 0.05; (F) δ = 0.8 and ρ13 = 0.2; (G) δ = 0.6 and ρ13 = 0.05; and (H) δ = 0.6 and ρ13 = 0.2.
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Figure 4. Epidemic size and endemic numbers with different vaccination strategies and vaccine efficacy of killed vaccines. (A)-(B) show the epidemic sizes
according to the changes of the probability that ruminants are vaccinated by killed vaccines (ρ21) and the probability that they receive repeated doses (ρ22)
when the reduction factor of transmission in ruminants vaccinated by killed vaccines (σ) is 0.8 and 0.6, respectively. (C)-(D) show the endemic numbers
according to the changes of ρ21 and ρ22 with σ = 0.8 and 0.6, respectively.
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